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Abstract. This contribution is based on the contents of a talk delivered at the Next-SigmaPhi conference
held in Crete in August 2005. It is adressed to an audience of physicists with diverse horizons and does
not assume any background in communications theory. Capacity approaching error correcting codes for
channel communication known as Low Density Parity Check (LDPC) codes have attracted considerable
attention from coding theorists in the last decade. Surprisingly strong connections with the theory of
diluted spin glasses have been discovered. In this work we elucidate one new connection, namely that a
class of correlation inequalities valid for Gaussian spin glasses can be applied to the theoretical analysis of
LDPC codes. This allows for a rigorous comparison between the so called (optimal) maximum a posteriori
and the computationaly efficient belief propagation decoders. The main ideas of the proofs are explained
and we refer to recent works for the more lengthy technical details.

PACS. 05.20.-y Classical statistical mechanics – 89.70.+c Information theory and communication theory
– 02.90.+p Other topics in mathematical methods in physics

1 Codes for communication through noisy
channels

We consider a (simplified) communication system with
three basic building blocks: the encoder, the channel and
the decoder.
Encoder. Suppose that messages to be sent are labelled
{1, ..., M} and that M = 2K . The messages can be rep-
resented by binary strings of length K, so that if a mes-
sage is sent K information bits are transmitted. Because
of channel imperfections these binary strings are encoded
before they are fed into the channel. In general the en-
coder is a map F

K
2 → F

N
2 , with F2 = {0, 1} and N > K.

So the codebook consists of 2K code words that are binary
strings of length N , (x1, ..., xN ) = x. In order to send K
information bits we make N uses of the channel: one says
that the rate of transmission is R = K

N .
Channel. We take a discrete (binary input) memoryless
channel with general output alphabet (for example F2

or R). Given a sent codeword (x1, ..., xN ) the received
word is (y1, ..., yN ) = y with probability pY|X(y|x) =
∏N

i=1 pY |X(yi|xi). In this context the choice of the tran-
sition probability pY |X specifies the model for the chan-
nel and is supposed to be known to the sender and the
receiver.
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Decoder. Given that xin is sent, the receiver possesses a
deformed version y (the channel observations or the chan-
nel output) and his task is to find estimates D(y) so that
the bit probability of error Perror((D(y))i �= xin

i ) is as
small as possible. One can show that the best decoder
(the one which gives the smallest probability of error)
is given by the Maximum a Posteriori (MAP) estima-
tor (x̂i)MAP = argmaxxi

pX|Y(xi|y) Unfortunately this
cannot be computed efficiently and other suboptimal es-
timators must be considered. Of course it is important to
compare their relationship and performance to the MAP
estimator. This problem is adressed here for LDPC codes
and the suboptimal estimator given by Belief Propaga-
tion (BP).

Shannon’s noisy channel coding theorem asserts that
one can communicate reliably as long as the rate R is
smaller than the channel capacity C = maxpXI(X ; Y ).
In this formula I(X ; Y ) is the mutual information be-
tween random variables X and Y which can be interpreted
as the information gained about X given that Y is ob-
served. The maximization over the prior distribution of
the codewords pX corresponds to finding the best possi-
ble codebook. In formulas, I(X ; Y ) = H(X)−H(X |Y ) =
H(Y ) − H(Y |X), where the Shannon entropy of X is
H(X) = −∑

x pX(x) ln pX(x) and the conditional entropy
H(X |Y ) = −∑

x,y pY (y)pX|Y (x|y) ln pX|Y (x|y) and sim-
ilarly for X and Y exchanged. All marginals are com-
puted from pX,Y(x,y) = pX(x)pY|X(y|x). Thus C is a
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Fig. 1. A Tanner graph. Check nodes on the top row constrain
the bits attached to variable nodes on the bottom row.

functional of the channel transition probability. Moreover
there is no way to communicate reliably when R > C.

More precisely, let R ≤ C − ε where ε > 0 is as
small as we wish. There exists an N0(ε) such that for each
N > N0(ε) we can find encoding and decoding maps (the
optimal decoder does the job) such that Perror < ε. Con-
versely, if R ≥ R + ε for any N and any encoding map
Perror ≥ p0 > 0 for some p0 independent of N .

For our purpose it is more convenient to fix a desired
rate R once for all and translate the inequality R < C
as a condition on the channel noise n < nsh where nsh is
a (channel dependent) function of R. This means we can
reliably transmit at rate R as long as the channel noise is
lower than the Shannon threshold nsh.

Shannon’s theorem is not constructive in the sense that
it guarantees the existence of an encoder in an ensemble
of random codes, but does not allow to construct “good”
(capacity approaching and computationaly efficient) en-
coders and decoders. One of the main themes of informa-
tion and coding theory for the last fifty years has been
to precisely define and address such questions. A fruitful
idea is to restrict the encoder maps to the class of linear
error correcting codes. Remarkably Shannon’s theorem is
still true if one restricts to the class of linear encoders and
there is no loss in capacity. For more details we refer the
reader to [1].

For us a linear code is a vector subspace of F
N
2 of di-

mension K < N . The subspace can be defined as the ker-
nel of a parity check M ×N matrix H with N −M = K.
In other words the set of code words satisfy M constraints
(so called parity checks)

N∑

k=1

Hlkxk = 0 mod 2, l = 1, ..., M, Hlk = 0, 1 (1)

Note that the rate of the code is R = K
N = 1 − M

N . A
very useful graphical representation of a linear code is in
terms of the Tanner graph (or factor graph). This is a
bipartite graph with variable nodes i ∈ {1, ..., N}, check
nodes A ∈ {1, ...M}, and edges connecting variable and
check nodes. We say that a variable node i “belongs” to a
check node A, i ∈ A, if and only if it appears in the parity
check equation labeled by A. In this case an edge connects
i and A (see Fig. 1). Low Density Parity Check (LDPC)
codes are a special class of linear codes with sparse Tan-
ner graphs: the degrees (or coordination number) of check
and variable nodes are of O(1) with respect to N . For
such codes there is still a threshold phenomenon as in
Shannon’s theorem however in general the maximal rate
at which error free communication is possible is below
Shannon’s capacity. On the other hand suboptimal but
computationaly efficient decoding algorithms exist.

2 Low Density Parity check codes as diluted
spin glasses

The close connection of the above formalism to random
spin systems was first noticed by Sourlas [2]. While this
connection is quite general and not limited to binary al-
phabets, memoryless channels and linear codes, here we
rephrase it in the case of low density parity check codes. If
code word bits are represented by spins through the map-
ping si = (−1)xi , the parity check equations (1) become

1
2
(1 + sA) = 1, sA =

∏

i∈A

si, A = 1, ..., M. (2)

The a posteriori probability distribution used in MAP de-
coding is nothing else than the Gibbs measure of a spin
system where the spins are attached to variable nodes
while check nodes are a convenient way to represent their
many-body interactions. By Bayes rule

pX|Y(x|y) =
1C(x)

∏N
i=1 pY |X(yi|xi)

∑
x 1C(x)

∏N
i=1 p(yi|xi)

. (3)

This is a Gibbs Measure 〈−〉C = e−HC
ZC

with hamiltonian

HC = −
∑

A∈C
JA(sA − 1) −

n∑

i=1

hisi, sA =
∏

i∈A

si (4)

where JA = +∞ and hi = 1
2 ln p(yi|0)

p(yi|1) . The channel obser-
vations enter through a quenched random magnetic field
hi whose distribution is induced by the distribution of
channel observations. It can be shown that for symmet-
ric channels (these satisfy p(y|x) = p(−y| − x)) there is
no loss in generality to assume that the input word is
(xin

1 = 0, ..., xin
N = 0), so that the distribution of channel

observations is
∏N

i=1 p(yi|0). Another source of quenched
randomness is given by the Tanner graph (defining the
coupling constants JA) which is taken from an ensemble
of random graphs. Since our results are independent of
the choice of this ensemble we do not discuss their con-
struction in detail. Let us point out that the performance
of a particular coding scheme depends on the choice of
the ensemble. The expectation value with respect to the
channel observations and the graphs are denoted EC,h.

The MAP decoding rule becomes

(ŝi)MAP = sign〈si〉C (5)

and the average bit probability of error for the optimal de-
coder is basically the overlap of (ŝ1, ..., ŝN ) with the fully
ferromagnetic configuration (1, ..., 1) (or the sent code-
word)

Perror =
1
N

N∑

i=1

EC,h [1 − sign〈si〉C ] . (6)

The replica or cavity methods can be applied to the cal-
culation of such quantities and show that a phase transi-
tion occurs [3]. Namely there is a threshold nMAP such
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Fig. 2. Tree like neighborhood To of an arbitrary root node
o. The loops are of size O(N) with high probability.

that for n < nMAP the probability of error goes to zero
in the thermodynamic limit (ferromagnetic phase), while
for n > nMAP the probability of error is bounded away
from zero. Sparse graphs are locally tree like in the sense
that the typical size of loops is O(N) and have no bound-
ary. Hence it is reasonable to expect that mean field ap-
proaches such as the replica or cavity methods yield exact
results. This is for the moment unproven although some
progress in this direction has been made by the use of in-
terpolation methods [6,7]. As explained below our use of
correlation inequalities yields closely related results.

3 Efficient decoding

Although one can optimize the degrees of the Tanner
graphs in order that nMAP approaches nsh, MAP decod-
ing is computationally too expensive. However one can
take advantage of the fact that low density graphs are lo-
cally tree like (see Fig. 2). Consider a specified root node
o and its neighborhood of depth d. As long as d = O(1)
with respect to N this neighborhood is a tree with high
probability. Thus one can expect that a good approxima-
tion is obtained by neglecting the loops and solving for the
magnetization of the spin system on a tree. The sign of the
magnetization on the tree defines the Belief Propagation
(BP) estimate

(ŝo)BP = sign tanh

(

ho +
∑

C∈o

u
(d−1)
C→o

)

. (7)

In this formula the fields uC→i are computed from the
iterative procedure

u
(t+1)
C→i = tanh−1

∏

j∈C\i

tanh h
(t)
j→C ,

h
(t+2)
i→A = hi +

∑

C∈V (i)\A

u
(t+1)
C→i (8)

with the initial conditions h
(0)
i→C = hi.

The belief propagation decoding algorithm is an iter-
ation based on these exchanges of messages uC→i from
checks to variables and messages hj→C from variables to
checks. It is applied to the full Tanner graph and despite
the presence of loops it converges and successfully decodes
for n < nBP . The relationship between the various thresh-
olds is nBP < nMAP < nsh. It should be clear that this

algorithm is closely related to the cavity equations of spin
glass theory.

One of the main problems in the theory of LDPC codes
is to optimize the codes so that the various thresholds
come as close as possible to nsh. A more basic problem
is to compare the error probabilities given by the BP and
MAP decoders. While this is difficult in general we show
below how these decoders can be compared for closely
related quantities - the generalized EXIT curves - through
the use of correlation inequalities.

4 Correlation inequalities

Here we restrict ourselves to the case of the binary in-
put additive white Gaussian noise channel (BIAWGNC)
where the results are more transparent. Mathematically
the channel is defined as yi = xi + Wi, Wi i.i.d N (0, n).
Then the log-likelihood ratio (or magnetic field) hi =
1
2 ln p(yi|0)

p(yi|1) has a Gaussian distribution with equal mean
and variance Eh[hi] = Vh[hi] = n−1/2. We soften the
parity check constraints from JA = +∞ to independent
Gaussian random variables with equal mean and variance
EJ [JA] = VJ [JA] = tA. The case of hard constraints
(the parity checks) is recovered by making tA → +∞.
With soft random constraints the hamiltonian is a Gaus-
sian spin glass with Nishimori gauge symmetry. Contucci,
Graffi and Nishimori proved for such systems the following
set of inequalities hold [8]

EJ [〈sX〉] ≥ 0,
∂

∂tY
EJ [〈sX〉] ≥ 0,

any X, Y ⊂ {1, ..., N}. (9)

The reader will recognize the close similarity to the fa-
mous Griffith-Kelly-Sherman correlation inequalities valid
for fully ferromagnetic systems.

This inequality can be applied to compare the magne-
tization on the initial Tanner graph and on a tree graph.
In the coding context this allows a comparison between
MAP and BP decoders. Consider the Gibbs measure de-
fined by the Gaussian spin glass hamiltonian with some
set of variances tA, A = 1, ..., M . The neighborhood To of
o (see Fig. 3) is a tree with probability (1−O(kd

N )) where
k is a constant related to the maximal degree of the nodes.
The second correlation inequality implies that, if for the
checks outside of To we decrease tA to zero, the average
magnetization of site o decreases. This inequality is pre-
served if we increase tA to infinity for the checks inside To.
In other words

EC,h [〈so〉C ] ≥ EC,h [〈so〉To |To is a tree] Pr(To is a tree).
(10)

The right hand side should also include a contribution
coming from the probability that To is not a tree but by
the first correlation inequality it is positive so that we can
omit it. We refer to this procedure as the “check erasing”
(see Fig. 3 for a pictorial illustration of check erasing).
On the tree graph the statistical mechanical sums can be
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Fig. 3. A pictorial representation of the check erasing inequality.

performed exactly and yield in a natural way the Belief
Propagation algorithm of the previous section. So

EC,h [〈so〉C ] ≥ (ŝo)BP

(

1 − O

(
kd

N

))

(11)

Finally one can take the thermodynamic limit N → +∞
and then the limit d → +∞. While on the right hand
side these limits can be shown to exist, the existence of
the thermodynamic limit for the left hand side is an open
problem. Thus we really take the lim infN→∞.

5 Generalized EXIT curves

The probability of error (6) is technically cumbersome to
handle. Another quantity called in coding theory the “ex-
trinsic information transfer” is more convenient to study.
It yields the same thresholds as the error probability and
from the statistical mechanical perspective it is much more
natural as will become clear below. Here we define the gen-
eralized EXIT curve associated to MAP decoding as [5]

gMAP (n) = lim inf
N→∞

1
N

d

dn
EC [H (X1, ..., XN |Y1, ..., YN )] .

(12)
The conditional entropy of the a posteriori distribution is
nothing else than the average entropy of the Gibbs distri-
bution for the spin glass. It should not come as a surprise
that this can be related to the free energy

EC [H(X|Y)] = EC,h [ln ZC ] −
N∑

i=1

EC,h [hi 〈si〉C ] . (13)

In the case of a BIAWGNC the derivative with respect to
the noise has a simple relation to the magnetization. This
is not obvious a priori because the channel noise does not
enter like an external field and for more general chan-
nels the corresponding relation is more complicated. The
derivation of (13) is too lengthy to show here but let us
note that the main point is to use Nishimori identities [4]

gMAP (n) = lim inf
N→+∞

1
2n3N

N∑

i=1

EC,h [1 − 〈si〉C ]

=
1

2n3
EC,h [1 − 〈so〉C ] , any o. (14)

The following lemma shows that gMAP (n) and Perror have
the same threshold.

Lemma. Assume communication through a BIAWGNC
with noise n and an ensemble of linear codes. We have that
gMAP (n) = 0 if and only if Pe = limN→+∞ Perror = 0.

To show that gMAP (n) = 0 implies Pe = 0 we note that
if 1 = EC,h[〈so〉C ] then EC,h[〈so〉2C ] − EC,h[〈so〉C ]2 = 0 be-
cause of the Nishimori identity EC,h[〈so〉2C ] = EC,h[〈so〉C ].
Thus the random variable 〈so〉C does not fluctuate and
equals 1 almost surely. Thus sign〈so〉C = +1 and Pe = 0.
For the converse we combine Fano’s inequality [1] together
with Jensen to get 0 ≤ 1

N H(X|Y) ≤ h(Perror) where h is
the binary entropy function. Thus limN→+∞ 1

N H(X|Y) =
0. If this is true for a whole range of n we can conclude
gMAP (n) = 0.

Combining (10) and (14) we obtain [11,10]

Theorem. Assume communication through a BIAWGNC
with noise n and an LDPC ensemble of codes. Then

gMAP (n) ≥ lim
d→+∞

1
2n3

Eh,l,u1,...,ul

×
[

1 − tanh

(

h +
l∑

c=1

u(d)
c

)]

(15)

where the right hand side is computed from the BP algo-
rithm and defines the generalized EXIT curve associated
to the BP decoder, gBP (n). The p.d.f of h is Gaussian with
mean and variance n−1/2, l is the random degree of vari-
able nodes, the distribution of ui is induced by the message
passing algorithm.

Such bounds and the method used here extends to the
class of (smooth) binary input symmetric channels [12].
These bounds have also been derived recently by the
method of physical degradation [5,13]. To conclude we
briefly discuss a number of consequences of the theorem.

General picture. In general the BP and MAP curves may
have several discontinuities corresponding to several phase
transitions in the spin glass. In the simplest (non trivial)
case where there is only one discontinuity their behavior is
as follows. For 0 < n < nBP gBP (n) = 0, there is a jump
discontinuity at nBP and for n > nBP gBP (n) is strictly
positive. The same occurs for gMAP but with the jump
discontinuity at nMAP and nMAP > nBP . Moreover the
BP curve is always under the MAP curve.
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Bound on MAP threshold. From the definition of the MAP
generalized EXIT curve we see that

∫ +∞

nMAP

gMAP (n)dn = lim inf
N→∞

1
N

(H(X|Y)|n=+∞

−H (X|Y) |n=nMAP ) = R. (16)

Indeed for infinite noise we have no knowledge of the sent
signal (so the conditional entropy is R) and just below
the MAP threshold we have perfect knowledge (the con-
ditional entropy is zero). The theorem then implies

R >

∫ +∞

nMAP

gBP (n)dn (17)

where the right hand side can be computed numerically.
This then yields a lower bound on the MAP threshold.
Numerical evaluations tend to show that this bound is
tight which suggests that above the MAP threshold the
BP and MAP curves should coincide [9].
Bounds on the conditional entropy. It is possible to ob-
tain bounds on the conditional entropy itself by inte-
gration of the inequality (15). Let us set h(X|Y) =
lim infN→+∞ 1

N H(X|Y). Integrating from 0 to n we get

h(X|Y) ≥
∫ n

0

gBP (n)dn (18)

and integrating from n to +∞,

h(X|Y) ≤ R −
∫ +∞

n

gBP (n)dn =
∫ n

0

gBP (n)dn +
(

R −
∫ +∞

0

gBP (n)dn

)

. (19)

In the case where there is no phase transition one can
show that R =

∫ +∞
0 dngBP (n) so that we get an exact

expression for the conditional entropy and its derivative
satisfies gMAP (n) = gBP (n). We have a situation where
the model is exactly solved and the result of the cavity
method (or replica symmetric expression) is proved to
be exact. However there is no fully polarized phase and
no error free communication. When there is one (or many)

phase transition the parenthesis in the last the right hand
side of (19) is strictly positive so that the two bounds
for h(X|Y) do not match. However it is believed that the
upper bound (18) is tight above the MAP threshold be-
cause it coincides with the result of the replica symmetric
calculation. The same bound has been obtained [7] using
the interpolation methods developed by Guerra [6] for the
Sherrington-Kirkpatrick model. Clearly, it would be desir-
able to prove the converse inequality.
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